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Abstract: A lot of research on deep learning and big data has led to efficient methods for processing
large volumes of data and research on conserving computing resources. Particularly in domains like
the IoT (Internet of Things), where the computing power is constrained, efficiently processing large
volumes of data to conserve resources is crucial. The processing-in-memory (PIM) architecture was
introduced as a method for efficient large-scale data processing. However, PIM focuses on changes
within the memory itself rather than addressing the needs of low-cost solutions such as the IoT.
This paper proposes a new approach using the PIM architecture to overcome memory bottlenecks
effectively in domains with computing performance constraints. We adopt the RISC-V instruction set
architecture for our proposed PIM system’s design, implementation, and comprehensive performance
evaluation. Our proposal expects to efficiently utilize low-spec systems like the IoT by minimizing
core modifications and introducing PIM instructions at the ISA level to enable solutions that leverage
PIM capabilities. We evaluate the performance of our proposed architecture by comparing it with
existing structures using convolution operations, the fundamental unit of deep-learning and big data
computations. The experimental results show our proposed structure achieves a 34.4% improvement
in processing speed and 18% improvement in power consumption compared to conventional von
Neumann-based architectures. This substantiates its effectiveness at the application level, extending
to fields such as deep learning and big data.

Keywords: processing in memory (PIM); artificial intelligence (AI); machine learning; deep learning;
RISC-V; Internet of Things (IoT)

1. Introduction

With the advancements in big data, deep learning, and IoT, research focusing on
efficient large-scale data processing and resource conservation has become pivotal in each
respective field [1]. However, despite much research, algorithms still consume a lot of
computing resources due to structural limitations in how large-scale data are read from
memory and processed, and the research of efficient structures remains an important
research topic [2]. These structural limitations come from memory bottlenecks typical in
von Neumann architectures, where all calculations are processed by the core, necessitating
the loading of extensive data from memory [3]. Thus, the speed of memory access becomes
a major limiting factor [4]. Yet, due to physical constraints, memory access speeds are
significantly lower compared to core processing speeds, thereby making the performance
of algorithms processing large-scale data heavily reliant on the speed of loading the data
from memory [3].

Research to improve memory access limitations include research on increasing memory
bandwidth, enhancing memory speeds, and exploring graphics processing unit (GPU)
technologies [5]. High-bandwidth memory (HBM), for instance, proposes the use of high-
bandwidth memory interfaces to increase data transfer rates, but structural bottlenecks
continue to be important challenges [6]. And GPU uses parallel computing logic to offload
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computations from the core, acting as accelerators. However, the bottleneck in transferring
data from the memory to the GPU complicates achieving optimal performance [7]. To
make improvements in the bottlenecks, recent PIM architectures are proposed [8]. Unlike
traditional von Neumann architectures where only the core processes and memory stores
data, PIM integrates the memory and processing to efficiently perform data processing,
offering a promising approach to overcoming memory bottlenecks [9]. However, research
on such PIM architectures has primarily focused on optimizing the in-memory computation
logic rather than developing PIM solutions for low-cost environments such as the IoT.
Consequently, studies on how to effectively utilize PIM architectures within the IoT remain
a necessary and unresolved area of research [10].

This paper proposes a novel structure combining PIM architecture with computing
resources constrained by a low area and low performance, as an alternative to mitigate
the data movement bottleneck between the memory and processors inherent in traditional
computer architectures [11]. Specifically, we introduce a PIM system based on the RISC-V
instruction set architecture, demonstrating effective strategies to alleviate memory bottle-
necks prevalent in existing computing systems [12]. Evaluating our proposed PIM system
involves assessing its performance through fundamental operations such as convolution in
deep learning [13]. The experimental results highlight the enhanced performance of the
proposed architecture in data-intensive fields like deep learning and big data, underscor-
ing its capability to facilitate efficient large-scale data processing in resource-constrained
environments such as the IoT [14]. We propose our architecture in the following sequence.
In Section 2, Background, we introduce the fundamental information necessary to describe
our proposed architecture. In Section 3, Proposed Design, we provide an explanation of
our proposed architecture, demonstrate its feasibility, and compare it with existing archi-
tectures to highlight improvements. In Section 4, Experimental Results, we evaluate the
algorithm and circuit performance of both the proposed architecture and the conventional
von Neumann architecture, thereby proving the superiority of our approach. Finally, in
Section 5, Conclusion, we summarize our claims and outline future research directions.

2. Background

The background section provides essential information necessary for this study. Firstly,
it introduces the concept of convolution operation, which serves as the fundamental
computational unit in deep-learning algorithms. Secondly, we describe the RISC-V RV32I
architecture, which is based on the traditional von Neumann architecture and utilizes the
RISC instruction set.

2.1. Convolution

Convolution is an important operation in deep learning and image processing, used
to apply filters to signals or images, create new signals or images, or identify specific
features in an image. This operation involves computing the sum of element-wise products
between an input signal (or image) and a kernel (filter). The mathematical representation
of convolution is shown in Equation (1) [15].

n k k
F*8l(f) =33 ) f(p.gd)g(p+ig+jd) 1)

d=0 p=04=0

Here, f represents a kernel of size k, g represents an input image, and * denotes the
convolution operator. Moving the filter f across the input data g, a single multiply-accumulate
operation is performed between corresponding elements. Convolution calculates a weighted
sum of neighboring pixel values to generate a new pixel value [f * g](i,j). Figure 1 illustrates
the concept of the convolution operation. For an input of size H;;, x Wj,, x N,ak X k x n
kernel performs convolution. It computes the element-wise product between the input data
and kernel data at the same location, followed by summation to determine the output data.
This process is repeated by shifting the kernel, generating output data of size Hyyr X Woys.
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Using convolution, various types of filters can be applied to images, enabling operations
such as sharpening, edge detection, or blurring. Convolution is also fundamental in deep
learning, where convolutional layers are composed of these operations to extract features
from images. Through iterative operations, convolution layers learn optimal kernel values.
Ultimately, convolutional neural networks (CNNSs) utilize these learned convolutional layers
to classify images or perform tasks such as object detection [16].

Dy

DO 1

Hin |

Wout

Vvill
Figure 1. Operation of convolution.

2.2. RISC-V RV32I Architecture

RISC-V is an open-source instruction set architecture (ISA) designed according to the
principles of the reduced instruction set computer (RISC). Its main features include sim-
plicity, scalability, and modularity. Figure 2 below illustrates six representative instruction
formats used in the 32-bit RISC-V ISA. Each instruction is structured according to specific
formats, making them concise and intuitive, and enabling an efficient processor design.

31 25 24 20 19 15 14 12 11 7 6 0
R-type | funct?7 | rs2 | rs1 | funct3 | rd | opcode |
31 20 19 15 14 12 11 7 6 0
I-type | imm12 | rsl | funct3 | rd | opcode |
31 25 24 20 19 15 14 12 11 7 6 0
S-type | imm?7 | rs2 | rsl | funct3 | imm5 | opcode |
31 30 25 24 20 19 15 14 12 11 87 6 0
B-type | i | immé6 | rs2 | rsl | funct3 | imm4 | i | opcode |
31 12 11 7 6 0
U-type | imm20 | rd | opcode |
31 21 20 19 12 11 7 6 0
J-type | i | imm10 | i | imm8 | rd | opcode |

Figure 2. RISC-V base instruction formats.

Table 1 lists key RISC-V instructions used prominently during compilation for con-
volution operations. Convolution involves multiplying a kernel with an image and accu-
mulating the results into the existing output, commonly utilizing add and mul operations,
as well as addi and slli instructions for memory address calculation [17]. Table 2 presents
assembly code performing convolution operations using RISC-V instructions. The Iw
instruction loads kernel and image data from memory to the core, performs multiplication
operations, and stores results in the memory area. Subsequently, it loads operation results
from memory to the core using lw, performs addition operations, and stores results in
the memory area. Repeating these steps by moving through memory areas computes the
final convolution result. Figure 3 depicts the structure of a RISC-V core designed based
on RV32I ISA. It comprises a five-stage pipelined structure: instruction fetch, instruction
decoding, execute, memory, and write back. It includes control logic to manage the pipeline
and generate control signals, an internal SRAM controller, and a load—store unit (LSU) to
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control peripheral addresses, a Harvard architecture with separate data and instruction
memories, and an AXI4 (Advanced eXtensible Interface 4) system bus for bus systems.
Such structures are widely used in low-area, low-power systems like the IoT, leveraging
space-efficient designs and achieving a high performance through the Harvard architecture
and pipelining techniques [18].

Table 1. Configuring the basic instruction of a convolution operation.

PIM Instruction Instruction Format Meaning
add rd, rs2, rs1 R-type R[rd] = M[rs2] + M[rs1]
mul rd, rs2, rs1 R-type R[rd] = M[rs2] x M[rs1]
slli rd, rs1, imm R-type R[rd] = M]rsl] < imm
addi rd, rs1, imm R-type R[rd] = M[rs1] + imm

Table 2. Convolution operation into assembly instruction.

Assembly Instruction Meaning
Iw x14, —32(x8) Load data from address in memory R[x8]-32 to register x14
Iw x14, —56(x8) Load data from address in memory R[x8]-56 to register x14
mul x15, x14, x15 Multiply the data in registers x14, x15 and store the result in register x15
sW x15, —40(x9) Store data in register x15 to address in memory R[x9]-40
Iw x14, —88(x9) Load data from address in memory R[x9]-88 to register x14
1w x15, —40(x9) Load data from address in memory R[x9]-40 to register x15
add x15, x14, x15 Add the data in registers x14, x15 and store the result in register x15
SW x15, —40(x9) Store data in register x15 to address in memory R[x9]-40
Peripheral Interface CORE
A — Pc Control Logic ~ wdata
| read read ALU el
1 branch LSUctrl WDsel REGctr] dataldata2 src ALUsel addr f—
IRQCTRL <= ; i P
Instruction
Fetch Decoder
rsl
pe |
SPI0 mN inste =
rd
opcode, funct
]
=
UART 0 % | Lsu — |
= wen addr wdata MEMctrl addr wen wdata MEMctrl
e = ] ]
Interface e 3 o $
o 20, SRAM data [ SRAM rdata
TIMER 0 e Controller 1 state — | Controller 2 e —|
rdata || e
Lt wen addr wdata [T M dars wen weata
S| i 1 T 1 i
Q Q1
Instruction Memory Data Memory
Memory

Figure 3. Block diagram of RISC-V RV32I architecture.

3. Proposed Design

In the existing von Neumann architecture, the core must fetch data from memory,
perform computations, and then store the results back into memory. This process involves
significant data movement, and systems targeting low-power and low-performance en-
vironments like RISC-V have limitations in bandwidth and speed between memory and
processors due to various constraints such as power and area. These speed limitations
during data movement lead to overall system degradation. In this paper, we propose to
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mitigate this issue by incorporating PIM capabilities into RISC-V systems to minimize the
data movement between memory and processors.

We delineate methods for utilizing PIM systems in RISC-V from both software and
hardware perspectives. First, for software-based PIM processing, we propose a method
where PIM instructions are recognized as existing load instructions rather than introducing
new instructions. This approach treats PIM instructions within the core as load instructions,
enabling an efficient hardware design without significant alterations to the existing core
system. Moreover, since they are recognized as load operations, compatibility with existing
code structures is maintained without requiring additional decode logic, making it straight-
forward. Figure 4 illustrates the format of the proposed PIM instructions. To maintain
compatibility with existing systems, we base the PIM-type on the existing I-type format of
load instructions, dividing the original 12-bit immediate field into two 6-bit fields to enable
the simultaneous access to two memory locations with PIM instructions. The positions of
the opcode, funct, rd, rs1, and imm fields perfectly align with the existing I-type format,
obviating the need for a separate decode logic. Table 3 shows the transformation of key
instructions used in convolution operations (add, mul, slli, and addi) into PIM instructions,
as add.p, mul.p, slli.p, and addi.p. The add.p and mul.pz instructions derived from add
and mul instructions can operate on data from two memory addresses before loading,
while slli.p and addi.p derived from slli and addi instructions can perform slli and addi
operations on data from a single memory address before loading. Table 4 presents an
example of converting convolution operations from Table 2 into PIM operations. In the
conventional method, four instructions—two Iw instructions to load the data from memory
into registers, followed by either mul or add operations, and sw instructions to store results
back to memory—are used. In contrast, the transformed instructions integrate two Iw
instructions and one operation instruction, recognized by the core as a single instruction
(interpreted as load), and sw instructions. Consequently, using PIM instructions reduces the
number of instructions the core processes from three to one, and allows parallel processing
with PIM units, potentially achieving an up to 66% performance improvement in a core
system with cycles per instruction (CPI) of 1. While significant performance gains over
conventional instructions can be expected, representing a high number of register addresses
and immediate values in a single instruction presents a trade-off between flexibility in
address access and performance. Using a commercially available RISC-V compiler for
compilation revealed the presence of immediate values exceeding the representation range
(2%), which cannot be processed by PIM instructions. Therefore, an essential PIM-aware
compiler is required to effectively address such trade-offs. This proposal is not limited to
convolution operation code but can also be applied to any code where two lw instructions
and one computation instruction are consecutively arranged, or where one lw instruction
and one computation instruction are consecutively arranged. However, due to the diffi-
culty of demonstrating this transformation across all algorithms, this paper will explain its
application specifically to CNNs as a representative example.

26 25 20 19 15 14 12 11 7 6 0

3
PIM-type |

immé6 immeé rsl | funct3 | rd & rs2 opcode

Figure 4. RISC-V base PIM instruction format.

Table 3. Configuring the basic PIM instruction of a convolution operation.

PIM Instruction Instruction Format Meaning
add.p rd, imm(rs1), imm(rs1) PIM-type R[rd] = M[rs1+imm][25:20]] + M[rs1+imm[31:26]]
mul.p rd, imm(rs1), imm(rs1) PIM-type R[rd] = M[rs1+imm][25:20]] x M][rs1+imm][31:26]]
slli.p rd, imm(rs1), imm PIM-type R[rd] = M[rs1+imm][25:20]] < imm[31:26]
addi.p rd, imm(rs1), imm PIM-type R[rd] = M[rs1+imm[25:20]] + imm[31:26]
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Table 4. Convolution operation into PIM assembly instruction.

Assembly Instruction

Meaning

mul.p
sw

add.p
SW

x15, —32(x8), —56(x8)
x15, —40(x9)
x15, —88(x9), —40(x9)
x15, —88(x9)

Multiply (in PU) the data in memory R[x8]-32, R[x8]-56 and load to register x15
Store data in register x15 to address in memory R[x9]-40

Add (in PU) the data in memory R[x9]-88, R[x9]-40 and store to register x15
Store data in register x15 to address in memory R[x9]-88

Peripheral

IRQ_CTRL

<=

SPIO

UART 0 %#)

Secondly, to hardware-implement PIM instructions, we introduced PIM logic not
inside the memory but in the SRAM controller, designing a control unit within the core
to manage it. Figure 5 illustrates the RISC-V core structure for processing the proposed
instructions. In the conventional von Neumann architecture system shown in Figure 3,
processing units responsible for processing reside exclusively within the core. However, our
proposed PIM structure incorporates a processing unit (PU) within the SRAM controller,
enabling processing units to perform operations on read data from memory internally,
transmitting only minimal data to the core. The PU added to the SRAM controller is
designed to perform operations using read data from memory and does not fetch or decode
instructions directly, necessitating the addition of a PIM control unit (PCU) within the core
to decode PIM-related instructions and generate commands for executing operations in the
PIM memory controller before the instruction is executed in the internal processing stage in
the core. This unit generates PIM-transaction-related signals (PIMen, PIMsel, and PIMaddr)
when instructions are fetched and decoded from the instruction memory to control the
PIM logic. Additionally, one of its critical roles is to produce signals (pipeCtrl_pim2lw)
to ensure that PIM instructions are processed similarly to lw instructions in the core’s
pipeline without additional pipeline stalls, smoothly integrating the process. Furthermore,
it outputs lw-related flags to prevent the control logic from identifying PIM instructions as
unknown instructions. This technique ensures that actual operations are performed not
in the pipeline in the core but via instructions sent to PIM, simultaneously reading the
data from memory. The control signals generated by PCU are utilized in the PU of the
SRAM controller. The PU performs PIM operations using output Q1 and Q2 of the data
memory. To facilitate this, a phase register is added to synchronize the SRAM read time
and control signals, and a bypass mux is added to allow the memory data to be loaded
directly without passing through the operation logic when PIM is not in use. This structure
maintains compatibility with existing systems while enabling the efficient execution of PIM
instructions through a streamlined design.

CORE

PCU

Interface

AN

Control Logic

ALY addr1
rc ALUsel PIMaddr

wdata
wen

opcode —[D g
P>

PIM
Decoder

Instruction
Decoder

File

PIM
CtrlGen

1
rs2
d
t

opcode, funct

AXI4Bus

PIMPU

TIMER O %#)

T T T
— t ; =+
Interface i i | §
C:> AAXMI SRAM rdata J
B Controller 1 | ]
rdata || — |
MEMrtl

SRAM
Controller2

rite rea
ata iata
rdata LSU
instr PIM —
wen_addr wdata MEMctrl addr addr wen wdata  PIMsel PIMen MEMctrl  fe—

| MEMcrtl
wen_addr wdata addr1 addr2 wen wdata

S S | 111
Q

Instruction Memory Data Memory

Memory

Figure 5. Block diagram of proposed architecture.
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4. Experimental Results

To evaluate our proposed architecture, we assess the processing speed performance
using convolution operations, which are the basic units used in deep-learning and large-
scale data processing fields. Additionally, we compare the area when synthesized using
the Synopsys Design Compiler for the CMOS 28 nm process at 100 MHz. We specifically
compare the input data size of 224 x 224 x 3, typical for deep-learning algorithms targeting
IoT devices like MobileNet, and three kernel sizes: 3 x 3,5 x 5, and 7 x 7. The source
code, originally written in C, is compiled using the RISC-V GNU Toolchain 12.1.0, with
modifications to incorporate the PIM instructions proposed in this paper. This process is
necessary due to the absence of compilers optimized for compiling and optimizing PIM
instructions. Our experimental results demonstrate significant performance improvements
in the proposed architecture featuring PIM instructions.

Firstly, in our proposed structure, the execution time of convolutions significantly
decreases compared to traditional von Neumann-based architectures. Figure 6 compares the
memory access rate for different kernel sizes between the proposed and existing structures.
As a result, the memory access rate decreased by 24% when performing the convolution
operation compared to the original. Figure 7 compares operation speeds for different kernel
sizes between the proposed and existing structures. For each kernel size, the proposed
structure showed a reduction in processing time of 31.4%, 32.7%, and 34.4% compared to the
existing structure. This latency reduction is due to PIM instructions performing calculations
directly in memory, reducing the number of instructions executed by the processor. While,
theoretically, this could lead to a 66% performance improvement (as three instructions
are consolidated into one), the actual compilation revealed limitations due to branch
instructions and non-convertible codes, resulting in restrained performance gains. However,
these results are derived from experiments without full compiler optimization, suggesting
that more extensive use of PIM instructions could yield higher performance improvements.

1 [ Original
160M — Il Proposed
£ 120M —
(=
» -
w
L
S
< 90M
-
o o
£
)
S 60M —
30M —

3Xx3x%X3 5x5x%x3 7X7X%X3
Kernel Size

Figure 6. Comparison of memory access rate.
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[ Original
100 — I Proposed

N
4 80
-
Q .
E
3
=} 60 —
=
sy
= -
3]
=
22 40 —

20 —

3Xx3x%x3 5x5x3 7X7%X3
Kernel Size

Figure 7. Comparison of execution time according to kernel size.

Secondly, we compare the synthesis results of the proposed architecture with the
existing structure in terms of area. The proposed structure reduces data movement and the
number of instructions processed in the core, enhancing the processing speed. However,
implementing PIM systems requires additional logic to control PIM and perform opera-
tions in memory. This trade-off evaluates the high processing speed advantage against
these requirements. Figure 8 compares the synthesis results to equivalent gate counts
(normalized on a two-input NAND gate) between the proposed and existing structures.
We evaluated areas divided into the core area with an added PCU, the interface (IF) area
with an added PU, Memory (Mem), and Peripheral (Peri). The peripheral area remained
the same; the proposed structure has increased in gate count by 285 for PCU and 5389 for
PIM PU compared to traditional structures, resulting in a 1.27% increase in overall core and
interface areas, leading to negligible area growth for significant performance improvements.
However, there was a 31% increase in the memory area due to the additional usage in our
system’s dual-port RAM. If the proposed structure omits the dual-port RAM, the memory
area implementation could match that of the existing structure, albeit with an additional
cycle for loading memory data. This presents a choice for users between area and per-
formance priorities. Through our experiments, we confirm that the proposed structure
achieves an over 30% processing performance improvement with a modest 1.27% increase
in the logic area. Figure 9 compares the energy consumption between the proposed and
existing structures. Through our experiments, the energy consumption decreased by about
18% compared to the original.
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Figure 8. Comparison of equivalent gate count by design.
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Figure 9. Comparison of energy consumption.

5. Conclusions

This paper proposes a PIM architecture as an alternative to traditional von Neumann
architectures for efficient large-scale data processing in resource-constrained environments.
The proposed system, based on RISC-V, introduces an innovative approach to efficiently
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handle large-scale data processing tasks in domains with limited computing performance.
To evaluate this system, performance assessments are conducted on operations commonly
used in large-scale data processing. In convolution experiments, we compare the process-
ing speed of the proposed PIM system against a standard RISC-V processor. The results
demonstrate how the PIM system alleviates bottlenecks associated with data movement.
By performing computations directly within memory, the proposed system enhances the
processing speed and reduces the latency associated with data movement. This insight sug-
gests that leveraging PIM can significantly improve efficiency in scenarios where the data
movement is a critical bottleneck. The findings of this paper provide important insights
that open avenues for the development and application of PIM systems in future IoT and
embedded environments. Effectively harnessing PIM will require support from the appli-
cation software perspective. Subsequent research should focus on optimizing compilers
capable of compiling new PIM instructions and developing optimized applications that
utilize these instructions
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