
Citation: Lim, J.; Son, J.; Yoo, H.

Efficient Processing-in-Memory

System Based on RISC-V Instruction

Set Architecture. Electronics 2024, 13,

2971. https://doi.org/10.3390/

electronics13152971

Academic Editor: Sunggu Lee

Received: 17 June 2024

Revised: 22 July 2024

Accepted: 25 July 2024

Published: 27 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Efficient Processing-in-Memory System Based on RISC-V
Instruction Set Architecture
Jihwan Lim, Jeonghun Son and Hoyoung Yoo *

Department of Electronics Engineering, Chungnam National University, Daejeon 34134, Republic of Korea;
jihwan.lim@abov.co.kr (J.L.); jhsohn.cas@o.cnu.ac.kr (J.S.)
* Correspondence: hyyoo@cnu.ac.kr

Abstract: A lot of research on deep learning and big data has led to efficient methods for processing
large volumes of data and research on conserving computing resources. Particularly in domains like
the IoT (Internet of Things), where the computing power is constrained, efficiently processing large
volumes of data to conserve resources is crucial. The processing-in-memory (PIM) architecture was
introduced as a method for efficient large-scale data processing. However, PIM focuses on changes
within the memory itself rather than addressing the needs of low-cost solutions such as the IoT.
This paper proposes a new approach using the PIM architecture to overcome memory bottlenecks
effectively in domains with computing performance constraints. We adopt the RISC-V instruction set
architecture for our proposed PIM system’s design, implementation, and comprehensive performance
evaluation. Our proposal expects to efficiently utilize low-spec systems like the IoT by minimizing
core modifications and introducing PIM instructions at the ISA level to enable solutions that leverage
PIM capabilities. We evaluate the performance of our proposed architecture by comparing it with
existing structures using convolution operations, the fundamental unit of deep-learning and big data
computations. The experimental results show our proposed structure achieves a 34.4% improvement
in processing speed and 18% improvement in power consumption compared to conventional von
Neumann-based architectures. This substantiates its effectiveness at the application level, extending
to fields such as deep learning and big data.

Keywords: processing in memory (PIM); artificial intelligence (AI); machine learning; deep learning;
RISC-V; Internet of Things (IoT)

1. Introduction

With the advancements in big data, deep learning, and IoT, research focusing on
efficient large-scale data processing and resource conservation has become pivotal in each
respective field [1]. However, despite much research, algorithms still consume a lot of
computing resources due to structural limitations in how large-scale data are read from
memory and processed, and the research of efficient structures remains an important
research topic [2]. These structural limitations come from memory bottlenecks typical in
von Neumann architectures, where all calculations are processed by the core, necessitating
the loading of extensive data from memory [3]. Thus, the speed of memory access becomes
a major limiting factor [4]. Yet, due to physical constraints, memory access speeds are
significantly lower compared to core processing speeds, thereby making the performance
of algorithms processing large-scale data heavily reliant on the speed of loading the data
from memory [3].

Research to improve memory access limitations include research on increasing memory
bandwidth, enhancing memory speeds, and exploring graphics processing unit (GPU)
technologies [5]. High-bandwidth memory (HBM), for instance, proposes the use of high-
bandwidth memory interfaces to increase data transfer rates, but structural bottlenecks
continue to be important challenges [6]. And GPU uses parallel computing logic to offload

Electronics 2024, 13, 2971. https://doi.org/10.3390/electronics13152971 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13152971
https://doi.org/10.3390/electronics13152971
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9323-0398
https://doi.org/10.3390/electronics13152971
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13152971?type=check_update&version=2

Electronics 2024, 13, 2971 2 of 11

computations from the core, acting as accelerators. However, the bottleneck in transferring
data from the memory to the GPU complicates achieving optimal performance [7]. To
make improvements in the bottlenecks, recent PIM architectures are proposed [8]. Unlike
traditional von Neumann architectures where only the core processes and memory stores
data, PIM integrates the memory and processing to efficiently perform data processing,
offering a promising approach to overcoming memory bottlenecks [9]. However, research
on such PIM architectures has primarily focused on optimizing the in-memory computation
logic rather than developing PIM solutions for low-cost environments such as the IoT.
Consequently, studies on how to effectively utilize PIM architectures within the IoT remain
a necessary and unresolved area of research [10].

This paper proposes a novel structure combining PIM architecture with computing
resources constrained by a low area and low performance, as an alternative to mitigate
the data movement bottleneck between the memory and processors inherent in traditional
computer architectures [11]. Specifically, we introduce a PIM system based on the RISC-V
instruction set architecture, demonstrating effective strategies to alleviate memory bottle-
necks prevalent in existing computing systems [12]. Evaluating our proposed PIM system
involves assessing its performance through fundamental operations such as convolution in
deep learning [13]. The experimental results highlight the enhanced performance of the
proposed architecture in data-intensive fields like deep learning and big data, underscor-
ing its capability to facilitate efficient large-scale data processing in resource-constrained
environments such as the IoT [14]. We propose our architecture in the following sequence.
In Section 2, Background, we introduce the fundamental information necessary to describe
our proposed architecture. In Section 3, Proposed Design, we provide an explanation of
our proposed architecture, demonstrate its feasibility, and compare it with existing archi-
tectures to highlight improvements. In Section 4, Experimental Results, we evaluate the
algorithm and circuit performance of both the proposed architecture and the conventional
von Neumann architecture, thereby proving the superiority of our approach. Finally, in
Section 5, Conclusion, we summarize our claims and outline future research directions.

2. Background

The background section provides essential information necessary for this study. Firstly,
it introduces the concept of convolution operation, which serves as the fundamental
computational unit in deep-learning algorithms. Secondly, we describe the RISC-V RV32I
architecture, which is based on the traditional von Neumann architecture and utilizes the
RISC instruction set.

2.1. Convolution

Convolution is an important operation in deep learning and image processing, used
to apply filters to signals or images, create new signals or images, or identify specific
features in an image. This operation involves computing the sum of element-wise products
between an input signal (or image) and a kernel (filter). The mathematical representation
of convolution is shown in Equation (1) [15].

[f ∗ g](i, j) =
n

∑
d=0

k

∑
p=0

k

∑
q=0

f (p, g, d)·g(p + i, g + j, d) (1)

Here, f represents a kernel of size k, g represents an input image, and ∗ denotes the
convolution operator. Moving the filter f across the input data g, a single multiply-accumulate
operation is performed between corresponding elements. Convolution calculates a weighted
sum of neighboring pixel values to generate a new pixel value [f ∗ g](i,j). Figure 1 illustrates
the concept of the convolution operation. For an input of size Hin × Win × N, a k × k × n
kernel performs convolution. It computes the element-wise product between the input data
and kernel data at the same location, followed by summation to determine the output data.
This process is repeated by shifting the kernel, generating output data of size Hout × Wout.

Electronics 2024, 13, 2971 3 of 11

Using convolution, various types of filters can be applied to images, enabling operations
such as sharpening, edge detection, or blurring. Convolution is also fundamental in deep
learning, where convolutional layers are composed of these operations to extract features
from images. Through iterative operations, convolution layers learn optimal kernel values.
Ultimately, convolutional neural networks (CNNs) utilize these learned convolutional layers
to classify images or perform tasks such as object detection [16].

Electronics 2024, 13, x FOR PEER REVIEW 3 of 11

between the input data and kernel data at the same location, followed by summation to
determine the output data. This process is repeated by shifting the kernel, generating out-
put data of size 𝐻௨௧ × 𝑊௨௧. Using convolution, various types of filters can be applied to
images, enabling operations such as sharpening, edge detection, or blurring. Convolution
is also fundamental in deep learning, where convolutional layers are composed of these
operations to extract features from images. Through iterative operations, convolution lay-
ers learn optimal kernel values. Ultimately, convolutional neural networks (CNNs) utilize
these learned convolutional layers to classify images or perform tasks such as object de-
tection [16].

Figure 1. Operation of convolution.

2.2. RISC-V RV32I Architecture
RISC-V is an open-source instruction set architecture (ISA) designed according to the

principles of the reduced instruction set computer (RISC). Its main features include sim-
plicity, scalability, and modularity. Figure 2 below illustrates six representative instruc-
tion formats used in the 32-bit RISC-V ISA. Each instruction is structured according to
specific formats, making them concise and intuitive, and enabling an efficient processor
design.

Figure 2. RISC-V base instruction formats.

Table 1 lists key RISC-V instructions used prominently during compilation for con-
volution operations. Convolution involves multiplying a kernel with an image and accu-
mulating the results into the existing output, commonly utilizing add and mul operations,
as well as addi and slli instructions for memory address calculation [17]. Table 2 presents
assembly code performing convolution operations using RISC-V instructions. The lw in-
struction loads kernel and image data from memory to the core, performs multiplication

funct731 25R-type rs224 20 rs119 15 funct314 12 rd11 7 opcode6 0
imm1231I-type 20 rs119 15 funct314 12 rd11 7 opcode6 0

imm731 25S-type rs224 20 rs119 15 funct314 12 imm511 7 opcode6 0
imm631 25B-type rs224 20 rs119 15 funct314 12 imm411 7 opcode6 0

imm2031U-type 12 rd11 7 opcode6 0
imm1031J-type 21 20 imm819 12 rd11 7 opcode6 0

30i 8 i
i i

Figure 1. Operation of convolution.

2.2. RISC-V RV32I Architecture

RISC-V is an open-source instruction set architecture (ISA) designed according to the
principles of the reduced instruction set computer (RISC). Its main features include sim-
plicity, scalability, and modularity. Figure 2 below illustrates six representative instruction
formats used in the 32-bit RISC-V ISA. Each instruction is structured according to specific
formats, making them concise and intuitive, and enabling an efficient processor design.

Electronics 2024, 13, x FOR PEER REVIEW 3 of 11

between the input data and kernel data at the same location, followed by summation to
determine the output data. This process is repeated by shifting the kernel, generating out-
put data of size 𝐻௨௧ × 𝑊௨௧. Using convolution, various types of filters can be applied to
images, enabling operations such as sharpening, edge detection, or blurring. Convolution
is also fundamental in deep learning, where convolutional layers are composed of these
operations to extract features from images. Through iterative operations, convolution lay-
ers learn optimal kernel values. Ultimately, convolutional neural networks (CNNs) utilize
these learned convolutional layers to classify images or perform tasks such as object de-
tection [16].

Figure 1. Operation of convolution.

2.2. RISC-V RV32I Architecture
RISC-V is an open-source instruction set architecture (ISA) designed according to the

principles of the reduced instruction set computer (RISC). Its main features include sim-
plicity, scalability, and modularity. Figure 2 below illustrates six representative instruc-
tion formats used in the 32-bit RISC-V ISA. Each instruction is structured according to
specific formats, making them concise and intuitive, and enabling an efficient processor
design.

Figure 2. RISC-V base instruction formats.

Table 1 lists key RISC-V instructions used prominently during compilation for con-
volution operations. Convolution involves multiplying a kernel with an image and accu-
mulating the results into the existing output, commonly utilizing add and mul operations,
as well as addi and slli instructions for memory address calculation [17]. Table 2 presents
assembly code performing convolution operations using RISC-V instructions. The lw in-
struction loads kernel and image data from memory to the core, performs multiplication

funct731 25R-type rs224 20 rs119 15 funct314 12 rd11 7 opcode6 0
imm1231I-type 20 rs119 15 funct314 12 rd11 7 opcode6 0

imm731 25S-type rs224 20 rs119 15 funct314 12 imm511 7 opcode6 0
imm631 25B-type rs224 20 rs119 15 funct314 12 imm411 7 opcode6 0

imm2031U-type 12 rd11 7 opcode6 0
imm1031J-type 21 20 imm819 12 rd11 7 opcode6 0

30i 8 i
i i

Figure 2. RISC-V base instruction formats.

Table 1 lists key RISC-V instructions used prominently during compilation for con-
volution operations. Convolution involves multiplying a kernel with an image and accu-
mulating the results into the existing output, commonly utilizing add and mul operations,
as well as addi and slli instructions for memory address calculation [17]. Table 2 presents
assembly code performing convolution operations using RISC-V instructions. The lw
instruction loads kernel and image data from memory to the core, performs multiplication
operations, and stores results in the memory area. Subsequently, it loads operation results
from memory to the core using lw, performs addition operations, and stores results in
the memory area. Repeating these steps by moving through memory areas computes the
final convolution result. Figure 3 depicts the structure of a RISC-V core designed based
on RV32I ISA. It comprises a five-stage pipelined structure: instruction fetch, instruction
decoding, execute, memory, and write back. It includes control logic to manage the pipeline
and generate control signals, an internal SRAM controller, and a load–store unit (LSU) to

Electronics 2024, 13, 2971 4 of 11

control peripheral addresses, a Harvard architecture with separate data and instruction
memories, and an AXI4 (Advanced eXtensible Interface 4) system bus for bus systems.
Such structures are widely used in low-area, low-power systems like the IoT, leveraging
space-efficient designs and achieving a high performance through the Harvard architecture
and pipelining techniques [18].

Table 1. Configuring the basic instruction of a convolution operation.

PIM Instruction Instruction Format Meaning

add rd, rs2, rs1 R-type R[rd] = M[rs2] + M[rs1]
mul rd, rs2, rs1 R-type R[rd] = M[rs2] × M[rs1]
slli rd, rs1, imm R-type R[rd] = M[rs1] � imm

addi rd, rs1, imm R-type R[rd] = M[rs1] + imm

Table 2. Convolution operation into assembly instruction.

Assembly Instruction Meaning

lw x14, −32(x8) Load data from address in memory R[x8]-32 to register x14
lw x14, −56(x8) Load data from address in memory R[x8]-56 to register x14

mul x15, x14, x15 Multiply the data in registers x14, x15 and store the result in register x15
sw x15, −40(x9) Store data in register x15 to address in memory R[x9]-40
lw x14, −88(x9) Load data from address in memory R[x9]-88 to register x14
lw x15, −40(x9) Load data from address in memory R[x9]-40 to register x15

add x15, x14, x15 Add the data in registers x14, x15 and store the result in register x15
sw x15, −40(x9) Store data in register x15 to address in memory R[x9]-40

Electronics 2024, 13, x FOR PEER REVIEW 4 of 11

operations, and stores results in the memory area. Subsequently, it loads operation results
from memory to the core using lw, performs addition operations, and stores results in the
memory area. Repeating these steps by moving through memory areas computes the final
convolution result. Figure 3 depicts the structure of a RISC-V core designed based on
RV32I ISA. It comprises a five-stage pipelined structure: instruction fetch, instruction de-
coding, execute, memory, and write back. It includes control logic to manage the pipeline
and generate control signals, an internal SRAM controller, and a load–store unit (LSU) to
control peripheral addresses, a Harvard architecture with separate data and instruction
memories, and an AXI4 (Advanced eXtensible Interface 4) system bus for bus systems.
Such structures are widely used in low-area, low-power systems like the IoT, leveraging
space-efficient designs and achieving a high performance through the Harvard architec-
ture and pipelining techniques [18].

Figure 3. Block diagram of RISC-V RV32I architecture.

Table 1. Configuring the basic instruction of a convolution operation.

PIM Instruction Instruction Format Meaning
add rd, rs2, rs1 R-type R[rd] = M[rs2] + M[rs1]
mul rd, rs2, rs1 R-type R[rd] = M[rs2] × M[rs1]
slli rd, rs1, imm R-type R[rd] = M[rs1] ≪ imm

addi rd, rs1, imm R-type R[rd] = M[rs1] + imm

Table 2. Convolution operation into assembly instruction.

Assembly Instruction Meaning
lw x14, −32(x8) Load data from address in memory R[x8]-32 to register x14
lw x14, -56(x8) Load data from address in memory R[x8]-56 to register x14

mul x15, x14, x15 Multiply the data in registers x14, x15 and store the result in register x15
sw x15, −40(x9) Store data in register x15 to address in memory R[x9]-40
lw x14, −88(x9) Load data from address in memory R[x9]-88 to register x14
lw x15, −40(x9) Load data from address in memory R[x9]-40 to register x15

add x15, x14, x15 Add the data in registers x14, x15 and store the result in register x15
sw x15, −40(x9) Store data in register x15 to address in memory R[x9]-40

Figure 3. Block diagram of RISC-V RV32I architecture.

3. Proposed Design

In the existing von Neumann architecture, the core must fetch data from memory,
perform computations, and then store the results back into memory. This process involves
significant data movement, and systems targeting low-power and low-performance en-
vironments like RISC-V have limitations in bandwidth and speed between memory and
processors due to various constraints such as power and area. These speed limitations
during data movement lead to overall system degradation. In this paper, we propose to

Electronics 2024, 13, 2971 5 of 11

mitigate this issue by incorporating PIM capabilities into RISC-V systems to minimize the
data movement between memory and processors.

We delineate methods for utilizing PIM systems in RISC-V from both software and
hardware perspectives. First, for software-based PIM processing, we propose a method
where PIM instructions are recognized as existing load instructions rather than introducing
new instructions. This approach treats PIM instructions within the core as load instructions,
enabling an efficient hardware design without significant alterations to the existing core
system. Moreover, since they are recognized as load operations, compatibility with existing
code structures is maintained without requiring additional decode logic, making it straight-
forward. Figure 4 illustrates the format of the proposed PIM instructions. To maintain
compatibility with existing systems, we base the PIM-type on the existing I-type format of
load instructions, dividing the original 12-bit immediate field into two 6-bit fields to enable
the simultaneous access to two memory locations with PIM instructions. The positions of
the opcode, funct, rd, rs1, and imm fields perfectly align with the existing I-type format,
obviating the need for a separate decode logic. Table 3 shows the transformation of key
instructions used in convolution operations (add, mul, slli, and addi) into PIM instructions,
as add.p, mul.p, slli.p, and addi.p. The add.p and mul.pz instructions derived from add
and mul instructions can operate on data from two memory addresses before loading,
while slli.p and addi.p derived from slli and addi instructions can perform slli and addi
operations on data from a single memory address before loading. Table 4 presents an
example of converting convolution operations from Table 2 into PIM operations. In the
conventional method, four instructions—two lw instructions to load the data from memory
into registers, followed by either mul or add operations, and sw instructions to store results
back to memory—are used. In contrast, the transformed instructions integrate two lw
instructions and one operation instruction, recognized by the core as a single instruction
(interpreted as load), and sw instructions. Consequently, using PIM instructions reduces the
number of instructions the core processes from three to one, and allows parallel processing
with PIM units, potentially achieving an up to 66% performance improvement in a core
system with cycles per instruction (CPI) of 1. While significant performance gains over
conventional instructions can be expected, representing a high number of register addresses
and immediate values in a single instruction presents a trade-off between flexibility in
address access and performance. Using a commercially available RISC-V compiler for
compilation revealed the presence of immediate values exceeding the representation range
(26), which cannot be processed by PIM instructions. Therefore, an essential PIM-aware
compiler is required to effectively address such trade-offs. This proposal is not limited to
convolution operation code but can also be applied to any code where two lw instructions
and one computation instruction are consecutively arranged, or where one lw instruction
and one computation instruction are consecutively arranged. However, due to the diffi-
culty of demonstrating this transformation across all algorithms, this paper will explain its
application specifically to CNNs as a representative example.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 11

3. Proposed Design
In the existing von Neumann architecture, the core must fetch data from memory,

perform computations, and then store the results back into memory. This process involves
significant data movement, and systems targeting low-power and low-performance envi-
ronments like RISC-V have limitations in bandwidth and speed between memory and
processors due to various constraints such as power and area. These speed limitations
during data movement lead to overall system degradation. In this paper, we propose to
mitigate this issue by incorporating PIM capabilities into RISC-V systems to minimize the
data movement between memory and processors.

We delineate methods for utilizing PIM systems in RISC-V from both software and
hardware perspectives. First, for software-based PIM processing, we propose a method
where PIM instructions are recognized as existing load instructions rather than introduc-
ing new instructions. This approach treats PIM instructions within the core as load in-
structions, enabling an efficient hardware design without significant alterations to the ex-
isting core system. Moreover, since they are recognized as load operations, compatibility
with existing code structures is maintained without requiring additional decode logic,
making it straightforward. Figure 4 illustrates the format of the proposed PIM instruc-
tions. To maintain compatibility with existing systems, we base the PIM-type on the ex-
isting I-type format of load instructions, dividing the original 12-bit immediate field into
two 6-bit fields to enable the simultaneous access to two memory locations with PIM in-
structions. The positions of the opcode, funct, rd, rs1, and imm fields perfectly align with
the existing I-type format, obviating the need for a separate decode logic. Table 3 shows
the transformation of key instructions used in convolution operations (add, mul, slli, and
addi) into PIM instructions, as add.p, mul.p, slli.p, and addi.p. The add.p and mul.pz in-
structions derived from add and mul instructions can operate on data from two memory
addresses before loading, while slli.p and addi.p derived from slli and addi instructions
can perform slli and addi operations on data from a single memory address before loading.
Table 4 presents an example of converting convolution operations from Table 2 into PIM
operations. In the conventional method, four instructions—two lw instructions to load the
data from memory into registers, followed by either mul or add operations, and sw in-
structions to store results back to memory—are used. In contrast, the transformed instruc-
tions integrate two lw instructions and one operation instruction, recognized by the core
as a single instruction (interpreted as load), and sw instructions. Consequently, using PIM
instructions reduces the number of instructions the core processes from three to one, and
allows parallel processing with PIM units, potentially achieving an up to 66% perfor-
mance improvement in a core system with cycles per instruction (CPI) of 1. While signifi-
cant performance gains over conventional instructions can be expected, representing a
high number of register addresses and immediate values in a single instruction presents
a trade-off between flexibility in address access and performance. Using a commercially
available RISC-V compiler for compilation revealed the presence of immediate values ex-
ceeding the representation range (2), which cannot be processed by PIM instructions.
Therefore, an essential PIM-aware compiler is required to effectively address such trade-
offs. This proposal is not limited to convolution operation code but can also be applied to
any code where two lw instructions and one computation instruction are consecutively
arranged, or where one lw instruction and one computation instruction are consecutively
arranged. However, due to the difficulty of demonstrating this transformation across all
algorithms, this paper will explain its application specifically to CNNs as a representative
example.

Figure 4. RISC-V base PIM instruction format. Figure 4. RISC-V base PIM instruction format.

Table 3. Configuring the basic PIM instruction of a convolution operation.

PIM Instruction Instruction Format Meaning

add.p rd, imm(rs1), imm(rs1) PIM-type R[rd] = M[rs1+imm[25:20]] + M[rs1+imm[31:26]]
mul.p rd, imm(rs1), imm(rs1) PIM-type R[rd] = M[rs1+imm[25:20]] × M[rs1+imm[31:26]]
slli.p rd, imm(rs1), imm PIM-type R[rd] = M[rs1+imm[25:20]] � imm[31:26]

addi.p rd, imm(rs1), imm PIM-type R[rd] = M[rs1+imm[25:20]] + imm[31:26]

Electronics 2024, 13, 2971 6 of 11

Table 4. Convolution operation into PIM assembly instruction.

Assembly Instruction Meaning

mul.p x15, −32(x8), −56(x8) Multiply (in PU) the data in memory R[x8]-32, R[x8]-56 and load to register x15
sw x15, −40(x9) Store data in register x15 to address in memory R[x9]-40

add.p x15, −88(x9), −40(x9) Add (in PU) the data in memory R[x9]-88, R[x9]-40 and store to register x15
sw x15, −88(x9) Store data in register x15 to address in memory R[x9]-88

Secondly, to hardware-implement PIM instructions, we introduced PIM logic not
inside the memory but in the SRAM controller, designing a control unit within the core
to manage it. Figure 5 illustrates the RISC-V core structure for processing the proposed
instructions. In the conventional von Neumann architecture system shown in Figure 3,
processing units responsible for processing reside exclusively within the core. However, our
proposed PIM structure incorporates a processing unit (PU) within the SRAM controller,
enabling processing units to perform operations on read data from memory internally,
transmitting only minimal data to the core. The PU added to the SRAM controller is
designed to perform operations using read data from memory and does not fetch or decode
instructions directly, necessitating the addition of a PIM control unit (PCU) within the core
to decode PIM-related instructions and generate commands for executing operations in the
PIM memory controller before the instruction is executed in the internal processing stage in
the core. This unit generates PIM-transaction-related signals (PIMen, PIMsel, and PIMaddr)
when instructions are fetched and decoded from the instruction memory to control the
PIM logic. Additionally, one of its critical roles is to produce signals (pipeCtrl_pim2lw)
to ensure that PIM instructions are processed similarly to lw instructions in the core’s
pipeline without additional pipeline stalls, smoothly integrating the process. Furthermore,
it outputs lw-related flags to prevent the control logic from identifying PIM instructions as
unknown instructions. This technique ensures that actual operations are performed not
in the pipeline in the core but via instructions sent to PIM, simultaneously reading the
data from memory. The control signals generated by PCU are utilized in the PU of the
SRAM controller. The PU performs PIM operations using output Q1 and Q2 of the data
memory. To facilitate this, a phase register is added to synchronize the SRAM read time
and control signals, and a bypass mux is added to allow the memory data to be loaded
directly without passing through the operation logic when PIM is not in use. This structure
maintains compatibility with existing systems while enabling the efficient execution of PIM
instructions through a streamlined design.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 11

Figure 5. Block diagram of proposed architecture.

4. Experimental Results
To evaluate our proposed architecture, we assess the processing speed performance

using convolution operations, which are the basic units used in deep-learning and large-
scale data processing fields. Additionally, we compare the area when synthesized using
the Synopsys Design Compiler for the CMOS 28 nm process at 100 MHz. We specifically
compare the input data size of 224 × 224 × 3, typical for deep-learning algorithms targeting
IoT devices like MobileNet, and three kernel sizes: 3 × 3, 5 × 5, and 7 × 7. The source code,
originally written in C, is compiled using the RISC-V GNU Toolchain 12.1.0, with modifi-
cations to incorporate the PIM instructions proposed in this paper. This process is neces-
sary due to the absence of compilers optimized for compiling and optimizing PIM instruc-
tions. Our experimental results demonstrate significant performance improvements in the
proposed architecture featuring PIM instructions.

Firstly, in our proposed structure, the execution time of convolutions significantly
decreases compared to traditional von Neumann-based architectures. Figure 6 compares
the memory access rate for different kernel sizes between the proposed and existing struc-
tures. As a result, the memory access rate decreased by 24% when performing the convo-
lution operation compared to the original. Figure 7 compares operation speeds for differ-
ent kernel sizes between the proposed and existing structures. For each kernel size, the
proposed structure showed a reduction in processing time of 31.4%, 32.7%, and 34.4%
compared to the existing structure. This latency reduction is due to PIM instructions per-
forming calculations directly in memory, reducing the number of instructions executed
by the processor. While, theoretically, this could lead to a 66% performance improvement
(as three instructions are consolidated into one), the actual compilation revealed limita-
tions due to branch instructions and non-convertible codes, resulting in restrained perfor-
mance gains. However, these results are derived from experiments without full compiler
optimization, suggesting that more extensive use of PIM instructions could yield higher
performance improvements.

Figure 5. Block diagram of proposed architecture.

Electronics 2024, 13, 2971 7 of 11

4. Experimental Results

To evaluate our proposed architecture, we assess the processing speed performance
using convolution operations, which are the basic units used in deep-learning and large-
scale data processing fields. Additionally, we compare the area when synthesized using
the Synopsys Design Compiler for the CMOS 28 nm process at 100 MHz. We specifically
compare the input data size of 224 × 224 × 3, typical for deep-learning algorithms targeting
IoT devices like MobileNet, and three kernel sizes: 3 × 3, 5 × 5, and 7 × 7. The source
code, originally written in C, is compiled using the RISC-V GNU Toolchain 12.1.0, with
modifications to incorporate the PIM instructions proposed in this paper. This process is
necessary due to the absence of compilers optimized for compiling and optimizing PIM
instructions. Our experimental results demonstrate significant performance improvements
in the proposed architecture featuring PIM instructions.

Firstly, in our proposed structure, the execution time of convolutions significantly
decreases compared to traditional von Neumann-based architectures. Figure 6 compares the
memory access rate for different kernel sizes between the proposed and existing structures.
As a result, the memory access rate decreased by 24% when performing the convolution
operation compared to the original. Figure 7 compares operation speeds for different kernel
sizes between the proposed and existing structures. For each kernel size, the proposed
structure showed a reduction in processing time of 31.4%, 32.7%, and 34.4% compared to the
existing structure. This latency reduction is due to PIM instructions performing calculations
directly in memory, reducing the number of instructions executed by the processor. While,
theoretically, this could lead to a 66% performance improvement (as three instructions
are consolidated into one), the actual compilation revealed limitations due to branch
instructions and non-convertible codes, resulting in restrained performance gains. However,
these results are derived from experiments without full compiler optimization, suggesting
that more extensive use of PIM instructions could yield higher performance improvements.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 11

Figure 6. Comparison of memory access rate.

Figure 7. Comparison of execution time according to kernel size.

Secondly, we compare the synthesis results of the proposed architecture with the ex-
isting structure in terms of area. The proposed structure reduces data movement and the
number of instructions processed in the core, enhancing the processing speed. However,
implementing PIM systems requires additional logic to control PIM and perform opera-
tions in memory. This trade-off evaluates the high processing speed advantage against

Figure 6. Comparison of memory access rate.

Electronics 2024, 13, 2971 8 of 11

Electronics 2024, 13, x FOR PEER REVIEW 8 of 11

Figure 6. Comparison of memory access rate.

Figure 7. Comparison of execution time according to kernel size.

Secondly, we compare the synthesis results of the proposed architecture with the ex-
isting structure in terms of area. The proposed structure reduces data movement and the
number of instructions processed in the core, enhancing the processing speed. However,
implementing PIM systems requires additional logic to control PIM and perform opera-
tions in memory. This trade-off evaluates the high processing speed advantage against

Figure 7. Comparison of execution time according to kernel size.

Secondly, we compare the synthesis results of the proposed architecture with the
existing structure in terms of area. The proposed structure reduces data movement and the
number of instructions processed in the core, enhancing the processing speed. However,
implementing PIM systems requires additional logic to control PIM and perform opera-
tions in memory. This trade-off evaluates the high processing speed advantage against
these requirements. Figure 8 compares the synthesis results to equivalent gate counts
(normalized on a two-input NAND gate) between the proposed and existing structures.
We evaluated areas divided into the core area with an added PCU, the interface (IF) area
with an added PU, Memory (Mem), and Peripheral (Peri). The peripheral area remained
the same; the proposed structure has increased in gate count by 285 for PCU and 5389 for
PIM PU compared to traditional structures, resulting in a 1.27% increase in overall core and
interface areas, leading to negligible area growth for significant performance improvements.
However, there was a 31% increase in the memory area due to the additional usage in our
system’s dual-port RAM. If the proposed structure omits the dual-port RAM, the memory
area implementation could match that of the existing structure, albeit with an additional
cycle for loading memory data. This presents a choice for users between area and per-
formance priorities. Through our experiments, we confirm that the proposed structure
achieves an over 30% processing performance improvement with a modest 1.27% increase
in the logic area. Figure 9 compares the energy consumption between the proposed and
existing structures. Through our experiments, the energy consumption decreased by about
18% compared to the original.

Electronics 2024, 13, 2971 9 of 11

Electronics 2024, 13, x FOR PEER REVIEW 9 of 11

these requirements. Figure 8 compares the synthesis results to equivalent gate counts (nor-
malized on a two-input NAND gate) between the proposed and existing structures. We
evaluated areas divided into the core area with an added PCU, the interface (IF) area with
an added PU, Memory (Mem), and Peripheral (Peri). The peripheral area remained the
same; the proposed structure has increased in gate count by 285 for PCU and 5389 for PIM
PU compared to traditional structures, resulting in a 1.27% increase in overall core and
interface areas, leading to negligible area growth for significant performance improve-
ments. However, there was a 31% increase in the memory area due to the additional usage
in our system’s dual-port RAM. If the proposed structure omits the dual-port RAM, the
memory area implementation could match that of the existing structure, albeit with an
additional cycle for loading memory data. This presents a choice for users between area
and performance priorities. Through our experiments, we confirm that the proposed
structure achieves an over 30% processing performance improvement with a modest
1.27% increase in the logic area. Figure 9 compares the energy consumption between the
proposed and existing structures. Through our experiments, the energy consumption de-
creased by about 18% compared to the original.

Figure 8. Comparison of equivalent gate count by design. Figure 8. Comparison of equivalent gate count by design.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 11

Figure 9. Comparison of energy consumption.

5. Conclusions
This paper proposes a PIM architecture as an alternative to traditional von Neumann

architectures for efficient large-scale data processing in resource-constrained environ-
ments. The proposed system, based on RISC-V, introduces an innovative approach to ef-
ficiently handle large-scale data processing tasks in domains with limited computing per-
formance. To evaluate this system, performance assessments are conducted on operations
commonly used in large-scale data processing. In convolution experiments, we compare
the processing speed of the proposed PIM system against a standard RISC-V processor.
The results demonstrate how the PIM system alleviates bottlenecks associated with data
movement. By performing computations directly within memory, the proposed system
enhances the processing speed and reduces the latency associated with data movement.
This insight suggests that leveraging PIM can significantly improve efficiency in scenarios
where the data movement is a critical bottleneck. The findings of this paper provide im-
portant insights that open avenues for the development and application of PIM systems
in future IoT and embedded environments. Effectively harnessing PIM will require sup-
port from the application software perspective. Subsequent research should focus on op-
timizing compilers capable of compiling new PIM instructions and developing optimized
applications that utilize these instructions

Author Contributions: Conceptualization, J.L.; Software, J.L. and J.S.; Project administration, H.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgements: This work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (No. 2022R1A5A8026986). This work was supported
by Institute of Information & communications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) (2022-0-01170).

Figure 9. Comparison of energy consumption.

5. Conclusions

This paper proposes a PIM architecture as an alternative to traditional von Neumann
architectures for efficient large-scale data processing in resource-constrained environments.
The proposed system, based on RISC-V, introduces an innovative approach to efficiently

Electronics 2024, 13, 2971 10 of 11

handle large-scale data processing tasks in domains with limited computing performance.
To evaluate this system, performance assessments are conducted on operations commonly
used in large-scale data processing. In convolution experiments, we compare the process-
ing speed of the proposed PIM system against a standard RISC-V processor. The results
demonstrate how the PIM system alleviates bottlenecks associated with data movement.
By performing computations directly within memory, the proposed system enhances the
processing speed and reduces the latency associated with data movement. This insight sug-
gests that leveraging PIM can significantly improve efficiency in scenarios where the data
movement is a critical bottleneck. The findings of this paper provide important insights
that open avenues for the development and application of PIM systems in future IoT and
embedded environments. Effectively harnessing PIM will require support from the appli-
cation software perspective. Subsequent research should focus on optimizing compilers
capable of compiling new PIM instructions and developing optimized applications that
utilize these instructions

Author Contributions: Conceptualization, J.L.; Software, J.L. and J.S.; Project administration, H.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: This work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (No. 2022R1A5A8026986). This work was supported
by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (2022-0-01170).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liang, D.S. Smart and Fast Data Processing for Deep Learning in Internet of Things: Less is more. IEEE Internet Things J. 2019, 6,

5981–5989. [CrossRef]
2. Zhuoying, Z.; Ziling, T.; Pinghui, M.; Xiaonan, W.; Dan, Z.; Xin, Z.; Ming, T.; Jie, L. A Heterogeneous Parallel Non-von Neumann

Architecture System for Accurate and Efficient Machine Learning Molecular Dynamics. IEEE Trans. Circuits Syst. I Regul. Pap.
2023, 70, 2439–2449.

3. Azriel, L.; Mendelson, A.; Weiser, U. Peripheral memory: A technique for fighting memory bandwidth bottleneck. IEEE Comput.
Archit. Lett. 2015, 14, 54–57. [CrossRef]

4. Souvik, K.; Priyanka, G.; Jeffry, L.; Hemanth, C.; BVVSN, R. Memristors Enabled Computing Correlation Parameter In-Memory
System: A Potential Alternative to Von Neumann Architecture. IEEE Trans. Very Large Scale Intergration (VLSI) Syst. 2022, 30,
755–768.

5. Cristobal, N.; Roberto, C.; Ricardo, B.; Javier, A.; Raimundo, V. GPU Tensor Cores for Fast Arithmetic Reductions. IEEE Trans.
Parallel Distrib. Syst. 2021, 32, 72–84.

6. Lee, J.; Kim, J.; Kim, K.; Ku, Y.; Kim, D.; Jeong, C.; Yun, T.; Kim, H.; Cho, H.; Oh, S.; et al. High bandwidth memory(HBM)
with TSV technique. In Proceedings of the 2016 13th International SoC Design Conference (ISOCC), Jeju, Republic of Korea, 29
December 2016.

7. Park, I.; Singhal, N.; Lee, M.; Cho, S.; Kim, C. Design and Performance Evaluation of Image Processing Algorithms on GPUs.
IEEE Trans. Parallel Distrib. Syst. 2011, 22, 91–104. [CrossRef]

8. Kim, D.; Yu, C.; Xie, S.; Chen, Y.; Kim, J.; Kim, B.; Kulkarni, J.; Kim, T. An Overview of Processing-in-Memory Circuits for Artificial
Intelligence and Machine Learning. IEEE J. Emerg. Sel. Top. Circuits Syst. 2022, 12, 338–353. [CrossRef]

9. Lee, S.; Kang, S.; Lee, J.; Kim, H.; Lee, E.; Seo, S.; Yoon, H.; Lee, S.; Lim, K.; Shin, H.; et al. Hardware Architecture and Software
Stack for PIM Based on Commercial DRAM Technology. In Proceedings of the 2021 ACM/IEEE 48th annual International
Symposium on Computer Architecture, Valencia, Spain, 4 August 2021.

10. Lee, W.J.; Kim, C.H.; Paik, Y.; Kim, S.W. PISA-DMA: Processing-in-Memory Instruction Set Architecture Using DMA. IEEE Access
2023, 11, 8622–8632. [CrossRef]

11. Heo, J.; Kim, J.; Han, W.; Kim, J.; Kim, J. SP-PIM: A Super-Pipelined Processing-In-Memory Accelerator with Local Error
Prediction for Area/Energy-Efficient On-Device Learning. IEEE J. Solid-State Circuits 2024, 59, 2671–2683. [CrossRef]

12. Elshimy, M.; Iskandar, V.; Goehringer, D.; Mohamed, A. A Near-Memory Dynamically Programmable Many-Core Overlay. In
Proceedings of the 2023 IEEE 16th International Symposium on Embedded Multicore/Many-Core Systems-on-Chip, Singapore,
18–21 December 2023.

https://doi.org/10.1109/JIOT.2018.2864579
https://doi.org/10.1109/LCA.2014.2319077
https://doi.org/10.1109/TPDS.2010.115
https://doi.org/10.1109/JETCAS.2022.3160455
https://doi.org/10.1109/ACCESS.2023.3238812
https://doi.org/10.1109/JSSC.2024.3369326

Electronics 2024, 13, 2971 11 of 11

13. Dinelli, G.; Meoni, G.; Rapuano, E.; Fanucci, L. Advantages and Limitations of Fully on-Chip CNN FPGA-Based Hardware
Accelerator. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems, Seville, Spain, 12–14 October
2020.

14. Heo, J.; Kim, J.; Lim, S.; Han, W.; Kim, J. T-PIM: An Energy-Efficient Processing-in-Memory Accelerator for End-to-End On-Device
Training. IEEE J. Solid-State Circuits 2023, 58, 600–613. [CrossRef]

15. Krizhevsky, A.; Sutskever, I.; Hinton, G. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

16. Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects.
IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6999–7019. [CrossRef] [PubMed]

17. Wang, S.; Wang, X.; Xu, Z.; Chen, B.; Feng, C.; Wang, Q.; Ye, T. Optimizing CNN Computation Using RISC-V Custom Instruction
Sets for Edge Platforms. IEEE Trans. Comput. 2024, 73, 1371–1384. [CrossRef]

18. Shin, D.; Yoo, H. The Heterogeneous Deep Neural Network Processor With a Non-von Neumann Architecture. Proc. IEEE 2020,
108, 1245–1260. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JSSC.2022.3220195
https://doi.org/10.1145/3065386
https://doi.org/10.1109/TNNLS.2021.3084827
https://www.ncbi.nlm.nih.gov/pubmed/34111009
https://doi.org/10.1109/TC.2024.3362060
https://doi.org/10.1109/JPROC.2019.2897076

	Introduction
	Background
	Convolution
	RISC-V RV32I Architecture

	Proposed Design
	Experimental Results
	Conclusions
	References

